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The propagation of weak- and strong-discontinuity longitudinal-torsional and transverse waves in various 

wound structures (helical ropes, flexible cables, textile yarns, and some other composite yarns) is 

considered. The tension and the torsional moment produced in cross-sections of wound structures (WS) by 

stretching are assumed to be functions of the relative deformation and torsional deformation. The wave 

propagation velocities, differential conditions, and discontinuities on the characteristic curves in a 

non-linearly WS are investigated, Problems of a constant-velocity longitudinal shock on a Iinearly eIastic 

WS of semi-infinite and finite length are considered. 

MOST wound structures (WS) rotate about their own axis when stretched. This basic property was 
accounted for by using a model [l-4] in which the tension and the torsional moment associated with 
stretching were assumed to be linear functions of the tensile and torsional deformation. In this 
paper, we assume that the tension and the torsional moment are non-linear functions of the tensile 
and torsional deformation. 

1. MATHEMATICAL MODEL AND DIFFERENTIAL EQUATIONS OF THE PLANE MOTION 

OF A WOUND STRUCTURE (WS) 

The main characteristic property of most WS is their ability to twist around their own axis when 
subjected to simple stretching. For instance, if an external tensile force is applied to the lower end of 
a vertically suspended right-twist textile yarn (TY), the yarn will rotate clockwise; a left-twist TY 
will rotate counterclockwise. If a force varying as shown in Fig. 1 is applied to the free end of the 
textile yarn, then for 0 < t< t * the yarn will rotate with a positive angular acceleration and for t > t * 
it will roatate with a negative angular acceleration. The lower part of a freely suspended yarn 
acquires a helical shape in equilibrium under the action of its own weight. These and other 
experimental observations [3] suggest that the yarn has some initially unbalanced internal stresses, 
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and simple stretching produces simultaneously an axial force and a torsional moment in the yarn 
cross-sections. Similar effects are observed in most wound structures-helical ropes [2], commercial 
cables [4, 51, and some composites [6-g]. 

In the theory of the torsion of homogeneous rods, the displacements of points in a non-circular 
rod subjected to torsion are decomposed into two components [9]. First, the rod cross-sections 
rotate (like a rigid whole) about the axis of rotation; second, all the points are displaced along the 
axis of rotation. Arguing similarly, we can decompose the total relative strain of a WS into two 
com~nents: the strain E* acquired by the WS due to stretching without rotation and the strain e** 
associated with rotation, i.e. E = E* = E**, where E**>O when the yarn is un~isting, E**<O when 
the yarn is twisting, and E ** = 0 for an ideal (neutral) yarn. The rotation about its own axis 
produced by stretching has been allowed for by setting E”* = A0 [l, 2, 5, 6, 10, 14), which leads to 
the following model of a linearly elastic WS: 

T = A,,E -+ A,&, M -_ A+ $- A&I (0 -= b’qdds) (1.1) 

where A is a coefficient of proportionality, T is the tension, 0 is the torsional deformation, IJJ is the 
angle of rotation of the cross-sections, M is the torsional moment, A, are the elastic coefficients (i, 
j = 1, 2) and s is the Lagrangian coordinate (in the model of a flexible cable ]5] the torsional 
deformation 8 is replaced with shearing defo~ation; the equation of compatibility can be used to 
transfer to 8). The c~~cients A, allow for the physical properties of the material and the 
technolo~cal parameters of the WS. Methods of dete~ining these coefficients are known for 
naturally twisted yarn [I], helical ropes [2], and flexible cables [S]. 

Using the model (l.l), we can model a non-linearly elastic WS in the form 

2’ = T (E, O), M = M (e, I)) (1.2) 

i.e. we assume that the tension and the torsional moment in an arbitrary cross-section are non-linear 
functions of the total relative deformation and torsional deformation. 

Assume that the stress in an arbitrary cross-section is directed along the tangent to the torsion 
axis, the principal moment in each section lies in the plane perpendicular to the torsion axis, and the 
moment of inertia of the cross-section relative to the torsion axis is constant for all points in the 
process of motion. We will use the following notation for arbitrary unknown functions: 

The equilibrium conditions of a WS element under the action of dynamic loads are described by 
the law of conservation of momentum expressed in projections on the Cartesian axes x and y, 

0.L’” .-. (T cos V))‘, py” -= (T siu rp)’ 0.3) 

and by the law of conservation of angular momentum expressed relative to the torsion axis 

IJ,” = M’ 0.4) 

where p is the initial density, (~0, t) is the angle between the tangent to the WS axis and the x-axis 
and I is the reduced moment of inertia of the cross-section relative to the torsion axis. The total 
relative strain satisfies the following geometrical equations [lo, 113: 

(1+e)coscp==1+5’, (1+e)siny,=y’ (1.5) 

Equations (1.3)-(1.5), jointly with Eq. (1.1) or (1.2) form a system of equations for the 
unknowns T, M, x, y, E, 8, cp. 

2. THE CHARACTERISTICS OF SYSTEM (1.2)-(1.5) AND THE DIFFERENTIAL 

CONDITIONS ON THE CHARACTERISTICS 

System (1.2W1.5) can be written in the form 
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pr” = cclX” + fQ@” + y1y” 
py” = a*d’ + @*lp" -j- y*y” 
Q)” =; QX” -I- fJ&” i- yay” 

a1 = aaT, + pbb2, f!, = aTe, y1 = a2 = ab (TE - pb*), 

p2 = PTe, yz = f3”Te + pa2b2, a3 = aME, f13 = Me 
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(2.1) 

Y8 = BMev 
1 .J- t’ 

a=*, p= y’ 
l+e’ 

b2-_ T 
p(1 -)- 8) 

The characteristic determinant of system (2.1) leads to an equation, which has the following 
solutions: 

I$ - v = T* (1 $ $1 

k2 = al,?2 “2 We* + Te* + q) 

q - [(Tc* - nip)2 + 4l’s*M,*l~ 

k2 = (&s)~, 2’* = Q-1, M* --_ MI-1 

(2.2) 

(2.3) 

(2.4) 

The dynamic load propagates along the WS in the direction of increasing values of the parameter 
s and in the opposite direction with three different velocities fb, +al, +a2. System (2.1) is 
obviously hyperbolic if ui2 SO and az2> 0. It follows from relationships (2.3) and (2.4) that these 
conditions are satisfied if 

l’eMe - I’,flYfJ > 0 (2.5) 

We will assume that condition (2.5) holds at any instant. 
The conditions on the characteristic curves are obtained by the following artificial technique. 

Assume that in addition to (2.1) we have the equations 

dx’ - kdx’ = 9l (s, t) dt, dy’ - kdy’ = q2 (s, t) dt (2.6) 
dq’ -. kdq’ = ‘p3 (s, t) dt 

where ‘pi are as yet unknown functions (i = 1,2,3). The functions vi in general are not all zero at the 
same time, since otherwise Eqs (2.1) could be represented as independent homogeneous wave 
equations describing, respectively, pure longitudinal, transverse, and torsional motion of the WS. 
Eliminating the derivatives with respect to f, we can rewrite (2.1) and (2.6) in the form 

p’yl = (al - Pk*) 2’ i l&g” + RY” 

P(p? =: a22” i-. f12$” + (y2 - pkl) y” 

Zcp, = ass” + (fJ - Zk2) g” -t- y3y” 

Multiply the second and the third equations of the last system by the unknown coefficients A* and 

CL*, respectively, and add the resulting equations. We now stipulate that the coefficients of the 
derivatives X” and $” are zero (because A* and t.r.* are arbitrary coefficients). As a result, we obtain 
the equations 

Z (al - pica) + h*Za, + p*pa8 = 0 

Zfh + Zig*@, + p*p (PY - zw = 0 

‘p1+ A+% + p’cp, = [ 

(2.7) 

The left-hand side of the last equation in (2.7) and the coefficient of y” are zero, because the 
second derivatives of the required functions have infinitely many values on the characteristic curves. 
Therefore, the following differential conditions hold on the characteristic curves (2.2)-(2.4): 

dx’ = kdru’ - h* (dy’ -- kdy’) + (kdq’ -. dq’) p* (2.8) 
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From relationships (2.7) it follows that A* and p* are functions of k2. Therefore, the three values 
of k2 at each instant correspond to three values of A* and CL* and there are a total of six differential 
conditions on the wave fronts Itrb, +a1 , +-az. 

Consider the linearly elastic case. With plane motion of the WS we obtain on the front I_+ar .z 

~I*** = tg cp 

&a = Z&s (~1”. s - b’) 

a [AsrAn - (An- pb’) (An - Z&)] 

and on the front +b 

If the coefficients A, (i, j = 1,2) and the angle cp are constant, then introducing the new functions 

w, = 2 j h,*y -+ l.&*** (i = 1) 2, 3) (2.9) 

we replace system (2.1) by the following homogeneous wave equations: 
. . 

Wl = k:w; (2.10) 

For rectilinear motion of the WS, we have cp = 0, y = 0, hi* = 0, p = 0, cy = 0, and the functions rvi 
take the form 

rut=x$-p,** (i=1,2) (2.11) 

From Eqs (2.9)-(2.11) it follows that the waves ?a1 , 2 are longitudinal-torsional and the waves +b 
are transverse. The torsional strain affects the velocity of propagation of the transverse wave only 
through the tension [see (2.3)], and the higher the torsional deformation, the higher is the velocity 
of the transverse wave. Therefore, large torsional deformations (high velocities of the transverse 
wave) correspond to large relative deformations. 

We can use Eq. (2.10) to show [10-12, 151 that when stationa~ loads are instantaneously applied 
to a linearly elastic WS, the excited regions in the WS are constant-parameter regions of rectilinear 
shape. 

3. DISCONTINIJITIES ON THE CHARACTERISTICS 

It has been shown [ll-141 that weak longitudinal discontinuities affect the tangential accelera- 
tions and the rate of elongation of an ideal yarn, without altering the normal accelerations and the 
rotational velocity of the yarn; weak transverse di~ontinuities alter only the rotational velocity and 
the normal accelerations of the yarn. In our case, these fundamental conclusions are not obvious, 
because our model of a ffexible WS and the resulting scheme of the wave process are considerably 
different from the model and the wave-motion scheme of an ideal yarn. 

We will use the traditional method to analyse discontinuities on the characteristics (see [ll, 151). 
Assume that the first derivatives of the displacements are continuous on the characteristic curves. 
Denote by q(s, t) and n(s, t) the discontinuity coefficients of the first and second derivatives, 
respectively. The discontinuity coefficients of the unknown functions are given corresponding 
subscripts, We write Eqs (2.1) for the points to the Ieft and to the right of the discontinuity line: 

(ok* - a,) 72, - filng - yin, = 0 

a,n, f jSsnJ! -. (pk* -- yz) ny =I 0 (3.1) 

a$zx -+ I’$&$/ - (I&%2 - og) n* = 0 

The determinant of this system is zero. As the independent equations, we take the first and third 
equations in system (3.1). 



Propagation of elastic waves in wound structures 121 

Consider the transverse wave front. Let k2 = b2, t’?#:a 1,22. Multiply the first equation in (3.1) by 
M, and the second by (Y (T, - p b2) and take the sum of these equations 

Il”u - (I b’ - 1Mfj) (p!+ - T,)I nq := 0 (3.2) 

The multiplier of n+ in Eq. (3.2) does not vanish by virtue of Eq. (2.2) and the assumption 
k2 = b2. Substituting nJ, = 0 in the first and third equations in (2.1), we obtain 

n, = -n, tg cp, [O’l = [$“l = 0, [$I = -tg q [y”l (3.3) 

Now multiply the first equation in (1.4) by coscp and the second by sincp and take the sum of these 
equations 

qE = (~8% cos rp + fly sin cp) u’ (3.4) 

where v(s, t) = 0 is the equation of the characteristic curve. 
Assume that v’ # 0 (stationary discontinuity fronts are not considered). The right-hand side of Eq. 

(3.4) is zero by the first equality in (3.3). Therefore, on the front -tb we have qE = 0. 
Now multiply the first equation in (1 S) by sin cp and the second by cos cp. Proceeding as before, we 

have 

(1 + e) qV = (n, cos cp - n, sin 9) v’ 

From the first equation in (3.3) and relationship (3.9, we obtain 

(3.5) 

rrcp = ?+#v’ I(l _t E) cos q1-i (3.6) 

Analysis of Eqs (3.3)-(3.6) shows that weak-discontinuity transverse waves do not affect the 
tensile and torsional deformations of the WS. 

Let us now consider the discontinuity fronts u1,22 propagating along an initially straight WS. 
Substituting into Eqs (1.5) and (3.1) p = 0, OL = 0, k2 = u1,22, we obtain 

nu = 0, n, = ngTe (pal,,2 - T,)-i 

qp = 0, qe # 0, n, = qs’ (3.7) 

Weak discontinuities +Q obviously affect the tensile and torsional deformations, and also the 
accelerations of the points of the WS tangential to the elastic axis. 

4. SPECIAL CASES 

Case I. Longitudinal waves in an ideal yam propagate with velocity d,T*. In our case, if we assume that 

al,2 ’ = d T* we obtain the following relationship between the total differentials of the tensile and torsional 
deformaiioni: 

de = ‘iz (Ma* - T,* * n) (T**)-‘de (4.1) 

The integrals of Eq. (4.1) corresponding to the positive and negative sign before the radical can be represented 
in the form 

fr (E, 0, Q) = 0 (i = 1, 2) (4.2) 

where cl and cz are integration constants. From (4.1) and (4.2) it follows that in this case there are two families 
of curves of opposite sign relative to the OE axis in the (E, 0) plane. Substituting 6 from Eq. (4.2) into 
T = T(E, O), we obtain two families of curves in the (7’, E) corresponding to the (6, E) curves. At each point, the 
slope that the tangent to the curve of the corresponding family makes with the OE axis is equal to the square of 
the velocity of propagation of the corresponding discontinuity aI2 or a2 2. The slope to the OE axis of the line 
passing through a given point in the (T, E) plane and the point E = -1 on the OE axis equals the square of the 
velocity of propagation of the transverse wave [ll, 121. The sign of the right-hand side of Eq. (4.1) matches the 
sign before the radical. Therefore, if Te>O, then the deformation differentials have equal signs on the 
discontinuity front aI2 and opposite signs on the front a*‘. 
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Case 2. Let 

ai,8 2 = d,M* (4.3) 

Considering Eqs (2.4) and (4.3) simultaneously, we find 

de = ‘!p (T,* - Me* + q) (IIf**)-ld0 (4.4) 

The integrals of this equation can be represented in the form 

rj (e, 8, 9) = 0 (i = 3, 4) (4.5) 

We see that if each equation in (4.5) is solved for E and the solutions are substituted into the equation 
M = M(E, e), a similar wave pattern for aI,22 is obtained in the (E, 8) and (M, 8) planes. 

Case 3. The most interesting case is 

d,T* = x, dgM* = x (4.6) 

Expanding the total differentials and equating the left-hand sides of Eq. (4.6), we obtain 

T,* + Ttt’de6 = iWedge + Me* (4.7) 

Solving Eq. (4.7) for d,e and doe, we obtain Eqs (4.1) and (4.4) respectively. Substituting &I into tbe first 
expression in (4.6) and d,+ into the second one, we obtain x = u1.a2. Thus, from (4.6) we obtain 

al,2 p = deT+ = dgM* (4.8) 

and cases 1 and 2 are special cases that foilow from assumption (4.6). From Eqs (4. l), (4.2), (4.4) and (4.5) we 
see that in this case there are two families of curves in the (T, M) plane corresponding to the (E, 8) curves. 

Equalities (4.8) imply that the sfopes of the tangents at the corresponding point (YZ’@, a’) and f&f’, e”) of the 
(Z’, E) and (M, 8) planes are equal. 

In other words, the longitudinal and torsional waves propagate with equal velocity along the WS, and the 
particles in the regions excited by the waves rtai and +a2 execute complicated longitudinal-torsional motion. 

5. PROPAGATION OF STRONG DISCONTINUITIES. A LONGITUDINAL SHOCK ON A 

LINEARLY ELASTIC WOUND STRUCTURE 

Assume that for ta0 a strong discontinuity wave arrives at the end of a WS element with initial 
length dse; the wave propagates from left to right with velocity D. During the time dt, this element 
changes its initial length c&e = (1 + ~a) d& to a new length &t = (1 + Q ) dt. 

From the condition of continuity of the displacement vector 1 (s, t) and the angle of rotation of the 
cross-sections along the line ds = Ddt, we obtain 

II’1 + D II’1 =-o, I$‘1 + I.2 ($4 = 0 (5.1) 

These equations can be written in the form 

1,’ - Lo’ = D (1 + s,) fo - (1 + e,) VI) 

$1’ - 4*’ = D ((3, - 0,) (5.2) 

Applying the laws of conservation of momentum and angular momentum to the element &o, we 
obtain 

T,*r, - Tl*rl = D (11’ - IO’), 

MO* - Ml* = D ($1’ - $0’) 

Substituting (5.2) into the second equation in (5.3), we obtain 

I T,* -D2 (1 + eo)l q, = IT,* - P (1 + a&l 71 

Consider the transverse wave front. Let T~#T~. From Eq. (5.4) we obtain 

To* - 02 (1 + Eo) = 0, T, - 02 (1 + e,) = 0 

(5.3) 

P-4) 

(5.5) 
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The system consisting of the second equations in (5.2), (5.3) and also (5.4), (5.5) has the following 
solution: 

e1 = e,, T,* = To*, 0, = tlo, Ml* = Mo* 

02 = T,* (1 + eJ1, 1,’ - 1,’ = D (TV - r,) (5.6) 

We see that strong- and weak-discontinuity transverse w;ves propagate with equal velocity along 
the WS and do not cause a deformation discontinuity. 

Proceeding similarly for 7. = TV, we obtain from Eqs (5.2)-(5.6) the conditions 

1,’ - 1,’ = + D (el - eO) t,,, I#,’ - I#~’ = v D (0, - Cl,) (5.7) 

on the longitudinal-torsional discontinuity fronts. 
Assume that the left end of a linearly elastic and initially straight WS starts moving at t ~0 

according to a given law 

5’ (0, t) = x00’ (t), $,’ (0, t) = $00’ (1) 

Two longitudinal-torsional waves propagating with constant velocities al and a2 are generated in 
the WS. If x~c,* and +c,c’ are constant (a constant-velocity shock), the perturbed regions 1 and 2 
(Fig. 2) of the structure are constant-parameter regions [lO-121. On the wave fronts ai and a2, we 
have the equations (i = 1,2) 

. 
X 1 - Xi-1 = U* b%* - 4, 4r’ - $-I = a, @,-I - 0,) (5.8) 

8, - e,+ = pLI ttl - a,-,) (5.9) 

Equations (5.9) follow from (4.1). System (5.8), (5.9) has the following solution: 

xz = x00 9 * 92’ = 400 
el = eo + (P*X*’ - $*I (w)-’ 

ez = e, + (a*~*’ - a$,‘) (~~a,~)-~ 

8, = e. + (P~P~x** - ILLS h.v 
8, --_ 8, + (w~ux,- - U*W (~u,P)-~ 

X1 * = 50’ + @8x*’ - 9*‘) p-’ 
0, + e. + (~~9; - ~~~1~4 ~-1 

p=lh-- p2, a = a2 - al, 

$*’ = $00’ - q&J., x*’ = 500’ - xg 

a* z 
U2CLl - %F2 

(5.10) 

Assume that the WS is of finite length L and for t = L/al the longitudinal-torsional wave a1 is 
reflected from the rigidly clamped end at the point s = L. Also assume that the reflection of the 
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wave ai produces two reflected longitudinal-torsional waves that propagate with the velocities a, 
and a2 (Fig. 2). As before, we obtain 

(5.11) 

We see that in general reflection of the wave al from a rigidly clamped end of the flexible WS 
produces two longitudinal-torsional waves. 

Consider the following special case. Let IJ.Q’ = 0, ~a* = 0, EO = 0, 00 = 0. From (5.11) we obtain the 
relationships 

e4=e3=2e,, 04=0,=2$& 

l#,r’ = &’ = 0, x“ = xg’ = 0 

from which it follows that reflection of an elastic longitudinal-torsional wave from a rigidly clamped end of an 
initially unstrained and static WS produces only one reflected wave. In the latter case, the tensile and torsional 
deformations on the reflected wave front (as for a flexible yarn) are equal to twice the deformation on the direct 
wave. 
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